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I. INTRODUCTION 

In the past decade extensive development of self-contained 

marine inertial navigation devices has been undertaken in 

response to the need for navigation equipment which is passive 

in nature. The precision currently attained in the best of 

systems is remarkably good when the operational periods are 

relatively short. If the operational periods exceed one or 

two days, however, the navigational errors may become exces­

sive. As a result, for extended operation the system must be 

periodically corrected through the use of some external posi­

tion reference. One method by which the system reference may 

be provided is to utilize solar (or lunar) observations with a 

tracking radiometer. This method is unique in that it pro­

vides an all-weather observation capability. The techniques 

for inertial system correction using radiometric observations 

have not been fully exploited; accordingly, a method for 

system correction and the resulting error of the correction is 

the subject of this study. The techniques which are developed 

here are equally applicable to optical observation of any 

celestial body. 

The fundamental principle underlying all inertial systems 

is that the vehicle's present position may be computed from 

its known initial position and a continuous measurement of its 

acceleration relative to some arbitrarily chosen frame of 

reference. The frame of reference is usually defined by a set 
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of three single-degree-of-freedom gyroscopes whose Input axes 

form an orthogonal coordinate system. Three single-degree-of-

freedom accelerometers are provided to measure the vector 

acceleration relative to the gyro frame of reference. 

A symbolic block diagram to illustrate the principles 

can be constructed as follows. The output, A,̂  of a single-

degree-of-freedom accelerometer is given by2 

A = R - G (1) 

where R is the acceleration of the position vector relative to 

inertial space, and G is the gravitational field vector. A 

first order approximation for G is 

G = -  f i -  R (2)  
ro 

where g is the gravitation constant and rQ is the radius of 

the earth. Thus Equation 1 can be written as 

Ï = 4 - f- & (3) 
0 

Symbolically, this vector equation can be implemented as shown 

in Figure 1. 

The double integration in the loop implies that the system 

is basically unstable, a characteristic of all pure inertial 

lln this study the notation V is used to denote the vector 
quanity V. 

2See, for example, McClure (4). 
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FIGURE I SYMBOLIC REPRESENTATION OF EQUATION 3 
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systems. As a result, initial errors in alignment propagate 

sinusoidally with angular frequency g/rQ radians per second. 

This period is approximately 8̂  minutes and is called the 

Schuler period. It should be noted, however, that in the 

absence of instrumentation errors', the system computes R with­

out error for any dynamic input. 

A variation of the pure inertial system, called "damped 

inertial" is used almost exclusively for marine navigation 

systems. This system introduces a velocity measurement, from 

a source external to the basic inertial system, in such a way 

that the response of the system is damped rather than unstable. 

As a result, the objectional sinusoidal propagation of initial 

errors is removed. Additionally, the damping bounds certain 

errors due to random instrument errors, (i.e., level platform 

tilt discussed in paragraph II.B.) which otherwise would be­

come unbounded. 

As a result of the nearly universal use of the damped 

inertial system for marine navigation, this system shall form 

the basis for the analysis which follows. 

The propagation of errors in the damped inertial naviga­

tor is covered extensively in the literature.1 As mentioned 

1There are three extensive reference works concerning 
error propagation in inertial navigation systems. Pitman (5), 
McOlure (4), and Savant et al. (6) all have excellent treat­
ments for the pure inertial system; Pitman (5) treats the 
damped inertial system. 
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above, some errors become bounded as a result of the damping; 

however, others become excessively large after extended periods 

of operation. As an example, the east-west position error 

remains unbounded even in the damped system. Accordingly, it 

is necessary to periodically correct the system with position 

Information from an external source if a high order of preci­

sion is to be maintained. Optical star observations have been 

used successfully in this connection although they do not pro­

vide an all-weather correction capability. 

Star trackers employing radiometric detection devices and 

operating at centimeter wavelengths are capable of providing 

observations of certain celestial radio sources under adverse 

weather conditions. Their chief limitation is that the number 

of sources which can be tracked is limited. For reasonable 

antenna sizes, tracking is restricted to the sun or moon. It 

may be noted, however, that the accuracy of tracking either of 

these sources is high, typically less than 0.5 minute of arc. 

A single observation of one star is not sufficient to 

provide a unique system correction (specifically, position 

cannot be uniquely determined). However, two observations of 

a single star separated in time can uniquely determine posi­

tion. The limiting case as the time separation approaches 

zero is equivalent to observation of the star's position and 

rate of change of position relative to the navigation coordi­

nate system. The analytic expression for the system error 
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vector in terms of these two parameters is derived in para­

graph III.B. 

The determination of the position of the star vector is 

limited by the tracking accuracy of the tracking equipment. 

In turn, this introduces an error in the computed estimate of 

the inertial system error. Since the star may be tracked for 

an extended period of time, data smoothing techniques may be 

applied to the raw estimate of the system error, based on the 

position and rate of the star vector, to provide a "best esti­

mate" of the inertial error with a residual error smaller than 

that of the unprocessed estimate. Therefore, it is of interest 

to study the propagation of errors in the combined inertial-

celestial system and to determine the "optimum data proces­

sor" . 

The criterion for optimization shall be that the ensemble 

average of the error of the estimate squared shall be a mini­

mum at time tQ + T, where tQ denotes the time at the initia­

tion of the star observation and T is the period of the obser­

vation. As discussed in Section III, the problem is funda­

mentally a transient one in which the estimate of the error 

must be obtained by an operation on finite data - finite in 

the sense that the period of observation is restricted. 

Accordingly, in this study the data processing shall be 

restricted to that provided by continuous linear filters with 

time-varying parameters which operate on the raw estimate for 
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the finite time interval T. 

The optimum filter is functionally related to the obser­

vation time T so that, in general, one cannot describe a fil­

ter which provides the best estimate of system error at any 

arbitrary time t. Accordingly, the estimate is optimum only 

at time t0 + T. The implication of this statement is that the 

inertial navigation system may be corrected at arbitrary but 

specific intervals of time, i.e., t0 + T̂ , tQ + Tj + Tg, tQ + 

Ti + Tg + Tj* •••. In some applications, notably in subma­

rines where exposure of an antenna for extended periods is 

operationally undesirable, it is probable that a single daily 

correction might be utilized. Accordingly, the expected error 

at the specific time tQ + I is an important consideration. In 

other situations, especially for surface vessels, a sequence 

of corrections during an extended period of celestial tracking 

may be desirable. It should be noted, however, that a single 

correction with T large may suit the operational requirements 

better than a sequence of corrections each with small T, since 

In general, the error of the estimate is smaller for large T. 
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II.' REVIEW OP INERTIAL NAVIGATOR CHARACTERISTICS 

A. Choice of Coordinate System 

Two general classes of inertial systems have been devel­

oped. The first class is one in which the operational time is 

relatively short and the vehicle paths are restricted to great 

circle ballistic trajectories with associated high velocities 

and initial accelerations. The second class is one in which 

there are extended operational periods and the vehicle path is 

restricted to the surface of the earth. In the second class 

the velocities and peak accelerations are appreciably less 

than those of the first class. Inasmuch as the environment 

for the two classes is different it is not surprising that the 

equipment associated with each of them may assume different 

forms. Specifically, the choice of coordinate systems, both 

physical and computed, is a significant design parameter from 

an equipment viewpoint. While In theory, all coordinate 

systems should be equivalent, as a practical matter specific 

systems are usually easier to implement in the particular 

coordinate system that best suits the problem specification. 

In this connection, for inertial navigation restricted to the 

surface of the earth, the choice of a locally-level coordinate 

system (one axis vertical) allows the system to be mechanized 

with only two components of the acceleration vector - the 

vertical component not being required. In addition, other 
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considerations, such as control of gravity sensitive gyro 

biases and the availability of pitch, roll, and yaw angles, 

make the locally-level system very attractive for marine 

inertial navigation. 

Accordingly, the locally-level coordinate system will be 

adopted as the computational coordinate system in this study. 

B. Error Model for the Damped Inertial Navigator1 

The equations of motion for a moving coordinate system 

are given by Equations 0-7 and 0-11 of Appendix 0. Equation 

0-7 is repeated below for convenience. 

2 

-"^ =~l +  H z- +  2- xïït +  - x  x  -) (°-7) 

In this expression A is the accelerometer output vector, R is 

the position vector of the system relative to inertial space, 

» is the angular rate of the system coordinate axes, and ~ 

represents differentiation with respect to an observer rotat­

ing with the system axes. For a level coordinate system, 

denoted by y, with unit vectors yv,, and north, west, 

and vertical respectively, Equation 0-7 becomes, in column 

vector notation, 

T̂he development of the error model in this section is an 
abbreviated treatment similar to a more extensive one given in 
Pitman (5). 
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r0 £oé sin e + ~-(x cos ©) ]  

r0 (n-X)2sin 9 cos ( 

rQ9(fi-X) sin 0 

(4) 

In Equation 4, 9 is latitude, X is longitude, 0 is the scaler 

magnitude of the earth's rotation rate, and Aj and Ag are the 

north and west components of the vehicle thrust acceleration 

vector measured relative to the y-coordinate system. The dot 

notation for derivatives means differentiation with respect to 

the system axes and is equivalent to the notation 2—. These 
dt 

equations may be mechanized as shown in Figure 2. 

For purposes of error analysis, it is convenient to omit 

the second term of Equation 4. This term is due to the cen­

trifugal acceleration and in a typical situation, omission 

results in a vertical error of less than 30 minutes of arc. 

Therefore, its effect on the propagation of errors is negligi­

ble. We also assume that 9 is small and may be similarly 

omitted. It should be noted that these approximations are 

valid only in a study of errors, and that the system itself 

must be fully mechanized according to Equation 4. Further, 

there are other effects such as gravity anomalies and the 

oblateness of the earth which must normally be computed in a 

precision system. 

Implicit in Equation 4, is a frame of reference, in this 

case locally level and with one axis north, in which the 
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FIGURE 2. SIMPLE MODEL OF AN INERTIAL NAVIGATOR 
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vector A Is measured. This frame is normally provided by 

three single-degree-of-freedom gyros whose input axes are 

coincident with the axes of the three (two in this case) 

orthogonal accelerometers. Since the gyros maintain their 

orientation in inertial space, they must be torqued at rates 

equal to the angular rate of the position vector in inertial 

space. For the coordinate system considered here, these rates 

are (Q - X)cos e, 6, and (0 - X) sin 9 for the north, west, and 

vertical axes respectively. 

Consider two sets of axes: (1) the y-coordinate system 

with axes Zz* and £3 which are north, west, and vertical 

respectively and with origin at the true position vector; and 

(2) the z-coordinate system with axes ẑ , ẑ  and ẑ  nominally 

north, west, and vertical and with origin at the true position 

vector, but whose actual positions are coincident with the 

instrument axes. The misalignment between the y- and z-

coordinate systems may be expressed in terms of a misalignment 

vector, £ given by: 

£ = Ci Zi + le + b *3 (5) 

where is a small rotation about the axis. Specifically, 

the z-coordinate system may be viewed as a rotation of the 

y-coordinate system through the vector £. Thus1 

êe Appendix A. 
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% = Zj. + £ 1 Ï1 (6) 

It should be noted that for small rotations 

% • Ii + i  1 K <7) 

If the z-system is misaligned from the true y-coordinate 

system by the rotation vector £, the components of the 

acceleration vector, Az, measured in the z-system, are inter­

preted as components in the direction of the y-system axes. 

As a result, the acceleration vector used by the system, A, 

is related to the true acceleration vector by1 

Az = A + C x A (8) 

Similarly, the components of vector rotation of the z-coordi-
2 nate axes are computed on the basis of the y-system axes, so 

that the z-system rotation vector, «z, is related to the y-

system vector, », by the equation 

»Z = » + £ 3C «£ (9) 

For small velocities relative to the earth, this may be ex­

pressed as 

1See Appendix A. 

2This statement is valid provided the error 0&2 is not 
large. This quantity introduces an additional computational 
error in m of the form OOdg cos 9 which is typically less than 
the components of the gyro drift rate vector, £. 
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2Z * 2 + £ * Q (10) 

where Q is the earth's rotation vector. Finally the gravity 

vector G becomes 

For the level system G s - g so that Equation 11 becomes 

Since the system is approximately linear, the principle of 

superposition permits one to draw the error diagram, shown in 

Figure 3, by resolution of the errors of the above vectors 

into their respective y-components. The components of the 

gyro drift rate vector, e, have been added, as well as the 

accelerometer instrumentation errors, £A. As discussed in 

Section 111, the components C2 of the misalignment 

vector are typically small and have been neglected. 

The above treatment is necessarily brief; for a more 

comprehensive discussion see Pitman (5). 

In Figure 3, the distance errors along the and £2 axes 

are denoted by ftd̂ , and ftdg respectively. These are the 

errors in which we are principally interested. As mentioned 

earlier, it is customary to provide an external measurement of 

velocity which is compared with that generated by the inertial 

computation. The difference may be fed back to the accelero­

meter output to provide a damping term. This is seen by con-

= S + & x G (11) 

" « I3 " « £ x £3 (12) 
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FIGURE 3. ERROR DIAGRAM FOR THE PURE INERTIAL NAVIGATOR 
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sidering only the velocity feedback loop. (See Figure 4.) 

In Figure 4,1 V is the externally measured velocity. The 

closed-loop transfer function is 

Clearly, since there is only one other integration in the 

loop, the loop is unconditionally stable. Thus Figure 3 may 

be modified to include the effects of errors in V. This is 

shown in Figure 5. 

Actually the simple gain constant k may be replaced by 

any frequency dependent network, provided that the system 

remains stable. The same is true for the simple integrations 

shown in Figure 2, although the system error is then dependent 

on the dynamics of the inputs. Nevertheless, if sufficient 

statistical information regarding the inputs and instrument 

errors is available, these transfer functions may be chosen to 

provide an 11 optimum" system performance. This problem is 

covered in the literature and will not be treated here. 

In Figure 4, an s-plane representation, rather than the 
real time Integral representation used earlier, has been 
employed to describe the transfer characteristics of the loop 
components. The variable s is the Laplace transform variable. 
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V 

FIGURE 4. VELOCITY FEEDBACK LOOP 
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FIGURE 5. ERROR DIAGRAM FOR THE DAMPED INERTIAL NAVIGATOR 
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III. DETERMINATION OF AZIMUTH AND POSITION ERRORS 

The salient feature of a damped Inertial navigation 

system is that the damping, in conjunction with the gravity 

feedback, produces a system in which the initial level errors, 

due to misalignments or position errors are ultimately reduced 

to zero. The system level error in the steady state is 

essentially determined then by the instrument errors. In a 

precision damped inertial system, level errors are typically 

less than ten seconds of arc which represent a position error 

of less than 1500 ft. due to this source. The position errors, 

however, are not necessarily small even though the level 

errors may be. Reference to Figure 5 indicates that a first 

order approximation to the distance error is given by 

distance error = r0 / e dt 

for C. « 1. In the above relation r is the radius of the 
1 o 

earth and « is the gyro drift rate. Interaxis coupling is 

neglected in the expression above and Ci and. Cg are assumed 

to be small. Accordingly, distance errors are not necessarily 

bounded.1 The reader is referred to Pitman (5) for an excel­

lent discussion of both the long-term and short-term propaga-

ĉtually, latitude and azimuth errors due to gyro drift 
rate biases are bounded - the longitude error is not bounded. 
Errors due to random components of gyro drift rate may not be 
bounded in any coordinate. 
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tion of errors for the damped inertial navigation system. 

When the level errors, and Cg» are small, an extended 

observation of the relative coordinates of one (or more) star 

position vector is sufficient to determine an estimate of the 

position error of the system. This is discussed in detail 

below. 

A. Relation of Error Angle Vectors to Azimuth 

and Position Errors 

In the preceding material, two coordinate systems have 

been considered: (1) the y-coordinate system with £g, £3 

unit vectors north, west, and vertical respectively and with 

origin at the true position vector; and (2) the z-coordinate 

system with axes nominally north, west, and vertical with 

origin at the true position vector, but displaced from their 

nominal positions by small rotations about the ̂  axes. The 

rotations were described in terms of a rotation vector 

£ = 1̂ Zj. + Cg Zg + C3 The z-coordinate system represents 

the actual position of the instrument (gyro and accelerometer) 

axes. 

It is convenient to introduce two additional sets of 

axes. The z-coordinate system axes defined by unit vectors 

x̂ , Xg, Xy which are north, west, and vertical respectively 

with the origin at the computed position vector. The p-system 

axes with unit vectors pg, p-j, are defined to be north, 
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west and vertical with origin at rQP relative to the center 

of the earth, where P is the unit vector in the direction of 

the observed star (sun). It may be noted that the axis is 

equal to P. 

The position of the z-coordinate system relative to the 

z-coordinate system may be described by a rotation vector, 

X = Xi + Xg Zg + *3 £3 (15) 

where X̂  represents a small rotation about the ẑ  axis. Thus 

+ % % Zi (14) 

Figure 6 is a plane representation of one component of the 

vectors £ and X, and may aid in visualizing the vector rota­

tions; R is the true position vector, and R + fiR is the com­

puted position vector. Now consider the case of Ç1 s* Ç2 s 0. 

The first two components of Equation 14 become 

Sl • £1 + I  x il (15) 

12 * L, + X X £2 (16) 

Further 

X3 * - C3 (17) 

so that X3 represents the azimuth error. Reference to Figure 

Ŝee Appendix A. 
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POLAR AXIS 

FIGURE 6. REPRESENTATION OF THE VECTOR COMPONENTS X2 
AND C2 ' 
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6 reveals that, for ̂  and C2 small, the angle X2 Is approxi­

mately the distance error along axis y1 (or z-̂ ) divided by the 

earth's radius, i.e., 

yi distance error 
X2 = (18) 

o 

Similarly 

y2 distance error 
xi = 5 ,19) 

Thus if the components of the vector X can be obtained, the 

azimuth and position errors may be computed. 

B. Estimate of the Error Vector and the 

Error of the Estimate 

Consider the observed star vector P which is fixed in 

inertial space. The components of P are tabulated relative 

to inertial space (or in an earth-fixed coordinate system); 

thus the system may compute the components of P relative to 

the x-coordinate system without error. Accordingly, P may be 

written as: 

£ = 2xi&i + px222 + PXj-3 (20) 

where P%̂  is the component of P along axis x̂  and may be 

regarded as known. A star tracker pointing in the direction 

of P measures the components of P relative to the z-coordinate 
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system. Thus the measured vector is 

l = p2l2l + Sz2% + pz3% (21) 

where the components Pẑ  are measured quantities. The system 

interprets the measured components Pz as being along the axis 

x̂ , and accordingly detects a difference between the measured 

and computed vector P. This difference, £P, is given by 

HE. - (?x^ ~ + ^x2 " PZ2)^2 + ~ (^2) 

Another expression for fiP may be obtained by substituting 

Ẑ *%̂ -Xxxj,in Equation 21 to give 

(23) 

E = pZltei - 1 x + PZ2'Ï2 - Ï 1 2a' * pZ3($3 - Ï 1 2=3) 

Subtracting Equation 23 from 20 gives 

x̂-̂ -l + X̂ĝ g + x̂-j-3 " * 1 -î  " ̂ Zg(-2 X 1 Sq)  

+ " X * x3) =0 

Noting the expression for fiP in Equation 22, this reduces to 

= ?ZlX 1 ~ ̂ Zg— x —2 ~ X —3 (24) 

However, since the rotations are small, Equation 24 can be 

written as 

i£ * - *«!* : % - ' pz3* * (25) 
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Or: 

££ = - X x P (26) 

Inasmuch as @P can be computed from Equation 22, Equation 

26 provides a method for measurement of certain components of 

X. Letting % = aftP + bP + c&P x P, and substituting in Equa­

tion 26 gives 

% = bP + &P % P (27) 

The coefficient b cannot be determined from Equation 26, 

so that Equation 27 does not uniquely define &. This is to 

be expected since rotations about P cannot be detected. The 

ambiguity may be removed by observation of another star whose 

position vector is not colinear with P. This case has been 

treated very briefly in Pitman (5). One may also remove the 

ambiguity by utilization of the earth's rotation vector and 

the associated rate of change of the vector P with respect to 

the z-coordinate system. 

Specifically, using the Theorem of Coriolis, the inertial 

space derivative of X may be expressed as 

£ = (28) 

where d/dt represents differentiation as viewed by an observer 

in inertial space, D/dt represents differentiation as viewed 

by an observer in the x-coordinate system, and » is the angular 



www.manaraa.com

26 

rotation vector of the x-coordinate system. Differentiating 

Equation 27 gives another expression for d%/dt: 

H = + 3T 1 E (29) 

In Equation 29 dP/dt has been set equal to zero since P is a 

constant vector in inertial space. Again, applying the 

Theorem of Coriolis, Equation 29 may be written as 

g|=||p + (JP + • I JP) X P (30) 

where the dot notation is equivalent to D/dt. Since b is a 

scaler, 

<31) 

Expansion of the triple vector product in Equation 30 gives 

dx 
-= = bp + £ x P + (H-P)âP - (̂ P-P)fi (32) 

Since P is a unit vector, jjP is orthogonal to P so that &P«P 

is zero. Thus Equation 32 becomes 

F|=BP + IPXP + (FFI-P)FIP (33) 
dt 

Substituting Equation 28 in 33 gives 

®xX=bP+£PxP+ (»'P)aP -  X (34) 

Referring to Figure 6, it is seen that if Ci and £2 are 
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small, the angular position errors in the direction of the ̂  

and £2 axes are given by Xg and X% respectively; also X̂  = -C3 

from Equation 17. If the interaxls coupling is small, Figure 

5 shows that 

D*1 DC-, 
dt" - '1 - St" * 0 (35) 

ar • = 3r *0 (36) 

In vector notation, Equations 35,36, and 37 become 

DX . 
dt = - = - (38) 

Substituting Equation 38 In Equation 34 gives 

» x X = b P + $ P x P +  (» - P ) f i P  -  £  ( 3 9 )  

Combining Equations 27 and 39 

e x (bP + jjP x P) = bP + is x P + (»-P)fiP - e (4o) 

Expanding the triple vector product gives 

be x P - (5P-«)P =bP+fiPxP-« (41) 

Equating components in the direction of P results in 

- 6P-op = b - ç.p (42) 
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The remaining terms give 

H î ' h à ' i  -  C l  -  ( * • £ . ) £ . •  ( 4 3 )  

Forming the scaler product of Equation 43 with the vector 

œ x P and expanding gives 

b = 2 Ci£-a - X £] (44) 
(S x £) 

In Equation 44, we have used the fact that £P* P = 0. Sub­

stituting Equation 44 in Equation 27 gives the complete expres­

sion for 

Ï = —-—2 nk-a (45) 
(a * I) 

It is seen that all quantities on the right side of Equa­

tion 45 are known or can be measured except the gyro drift 

rate vector c. If « were known, X could be uniquely deter­

mined. However an estimate of X can be obtained by assuming 

« to be zero,̂  as described below. 

The star tracker introduces a measurement error so that 

the vector represented by the pointing vector of the device is 

actually Pz + AP where AP is orthogonal to Pz. Accordingly, 

the estimate of % based on Equation 45 with £ equal to zero is 

c may be chosen to be any vector function. However, for 
typical gyros the ensemble average of c is normally zero; and 
thus it is chosen to be zero here. 
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i  = ôC (A + ÀP)-®H p + (ÛP + AP) x P (46) 
(W X P) 

Equation 46 is the equation which must be mechanized to form 

the raw estimate of X. In implementing Equation 46, some 

confusion may result from the terms containing AP. It should 

be noted that &P computed from the measured quantities Pẑ , 

using Equation 22, actually gives £P + AP. Hence the estimate 

of X computed by the system is X given in Equation 46. 

When the velocity relative to the earth is small, w is 

approximately equal to the earth's rotation vector, £, and 

Equation 46 reduces to a somewhat simpler form: 

£ = -3 r—[(A. + ÂP) - a ]  p + (&p + AT) I 2, (47) 
0 (1 - Bind) 

where d is the declination of the star. Similarly, Equation 

45 becomes 

x = -, Ï—r-Ciz-a - t-a * * E (48) 
0 (1 - sin d) 

In formulating the expression for the error in the esti­

mate we shall use Equations 4? and 48 with d equal to zero. 

In the principle application considered here, the declination 

rarely exceeds twenty degrees and therefore is negligible in 

the expression for the error in the estimate of the error %. 

The error in estimate of X may be found by subtracting 
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Equation 4? from Equation 4g to form 

àj = x - x = - -L[ap-n (49) 
a "  

It is interesting to note the relation of the first term 

of Equation 49 to the inertial space derivatives of the same 

quantity. Specifically 

dAP DAP 
• Û = • Q + a x 4£-Q 

Since the last term is zero, 

ar ' Û = 5r * 3 = (50) 

It will be convenient to use the inertial space derivatives 

in the computation of errors which follow. 
A 

In summary, an estimate of X, X may be obtained from 

Equation 46; the error in the estimate given by Equation 49. 

In deriving these relations we have assumed that the inter-

axis coupling is negligible during the period in which the 

computation and subsequent smoothing of data is to occur. 

Additionally, it has been assumed that the level errors, C]_ 

and C2 about the 2% and jg axes are small, and that and £2 

are negligible as a result. 
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C. Optimum Weighting Function 

A device which implements Equation 46 provides three 

scaler outputs which are the components of X» plus some un­

known error AX, as a continuous function of time. The 1th 

component of X and AX shall be denoted by x̂  and AX̂  respec­

tively. Data-smoothing techniques, usually referred to as 

"optimum filtering" in the continuous data case, may be ap­

plied to each of the scaler components to yield an optimum 

estimate of Xj.. The residual error, after filtering, shall be 

designated as &Xi. Specifically, we wish to apply a continu­

ous linear operation to x% + AX̂  so that the ensemble average 

of the residual error squared, 6X̂ , shall be minimized. 

Inasmuch as the number of celestial bodies which can be 

tracked by radiometric means is very limited, the vector 

representing the direction to the star cannot be provided to 

the system throughout a 24-hour period. During the period 

when the star vector is not available, the system operates as 

a normal damped inertial navigator with the customary error 

propagation. Accordingly, there are two modes of operation -

pure damped inertial alternating with periods of damped iner-

N̂ormally, the computation would be performed by a 
digital computer whose output clearly is not a continuous 
function of time. However, if the computation is repeated at 
intervals of 1/2 B or less, where B is the equivalent star 
tracker bandwidth, the computer may be considered as a real 
time analogue device. 
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tial with celestial monitoring. 

As a result of the foregoing discussion, one may describe 

the optimization problem as follows: 

1. The system operates as a damped inertial navigator 

for extended periods until time tQ when a star (sun) 

suitable for tracking is available. 

2. At time tQ a star vector is provided to the system. 

This vector provides a continuous estimate of the 

error vector X» The initial value of X, denoted 

by Xg, is assumed to have components which are inde­

pendent random variables with zero ensemble average. 

3. A linear operation is applied to the components of 

X + AX for time T = t - tQ. The linear operator is 

to be chosen so that the ensemble average of the 

residual error squared is minimized at time t0 + T. 

It appears that there is no general analytic solution to the 

problem stated above. However it is possible to express the 

optimum weighting function (or linear operator) as an integral 

equation suitable for numerical solution by digital computer. 

The output of a linear filter operating on the ith com­

ponent of X may be expressed as 

t 
Xi + ôXi = J* Ŵ (t, t) CXj.(t) + AX1(r)3dT (51) 

to 

where Ŵ (t, r) is a time-varying weighting function and 6Xi 

is the residual error after filtering. Subtracting Xi from 
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both sides of the equation gives the error 

„t 
6*i =  I  t) C\ { r )  + A%i(T)]dT - X1(t) (52) 

to 

By a change of variable Equation 52 may be written as 

T 
+ I) = J *i(T, + R) + + T) Jdr 

- + I) (53) 

where 

Wi(T, T) = V̂ (t0 + T, tQ + T) (54) 

In Equation 53, the variable t has been suppressed by making 

the substitution 

t = tQ + T (55) 

Squaring Equation 53 and taking the ensemble average1 gives 

6X1 = «TQJ'O *i(T»Ti)VT»T2) Cxi(to + Tl} + Axi(to + Tl> 1 x 

CXi(T0 + TG) + AXi(tg + TG) JDT^TG + X^(T0 + I) (56) 

T 
- 2/Q Wi(T,T)Xi(tg + T) [ [xi(t0 + T) + AX^(tq + r) ]DR 

( t, t) is to be chosen so that 6X̂  given by Equation 56 is a 

Ŝee Lanlng and Battin (2) or Davenport and Root (1) 
for a discussion of ensemble average as used here. 
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minimum. Applying the techniques of the calculus of varia­

tions, we replace (t,r) by Ŵ (t,T) + aK(t,r) where K(t,r) 

is an arbitrary function. If Ŵ (t,T) produces a minimum in 

6X̂ , then the function Wi(t,T) + aK(t,r) does not give a mini­

mum unless a is equal to zero. As a result, 6X̂  is functlon-
o 

ally related to the parameter a. Since 6X̂  is a minimum when 

a is zero, the derivative of 6X̂ (a) with respect to a must 

also be zero at a = 0. Thus, replacing (T,T) by 1T^(T,T) + 

aK(T,r) in Equation 56, taking the derivative with- respect to 

a, and letting a approach zero gives 

dftX̂  

da 
(57) 

a=0 = 44 

+ W1(T,T2)K(I,T1) CXj.(t0 + Tx) + AX1(t0 + TX) ] x 

Z\{tQ + t2) + AX1(t0 + Tg) ]dT]dT2 

- 2̂ K(T,T)Xi(t0 + T) £ x 1(t0+T) + AX1(t0+T)I|dT 

Setting the derivative equal to zero, and noting the symmetry 

of the first term with respect to t1 and Tg gives 

T T 
J* J* *i(T,T1)K(T,T2)[IX1(t0 + T X) + AXi(t0 + T-J] I 
0 0 

EXI(t0 + T2) + AXi(t0 + TG) 3DTLDTG (58) 

- 1̂ K(T,T)X1(t0 + T) [ Ix1(t0 + T) + AXi(t0 + T)]dT = 0 



www.manaraa.com

35 

Rearranging Equation 58 results in 

K(T,r)dr {ĵ  + tx) + AX̂  ̂+ T̂ )] x 

[\(tg + T) + AXI(t@ + T) ]DT^ (59) 

- *I(T* + T)C*I(*0 + T) + AX^FT^ + T)]} = 0 

Since Equation 59 must hold for arbitrary K(t,r), the term in 

brackets must be zero. Thus 

T 
S *i( I»*1 )Cx1 ( t0  + TX) + AX1 ( t0  + Tx)3 x 
0  o 

[x̂ (tg + T) + AX1(t0 + T) ]DT^ (60) 

- X1(tQ + T) Cx1(tQ + T) + AX1(tQ + ?)] = 0 0 < T < T 

Given the ensemble averages required, Equation 60 is the 

integral equation for the optimum time-varying weighting 

function Tf̂ (t,T). It should be noted that *̂ (t,r) differs 

from the weighting function to be implemented for the system, 

t,r). The relation between the two is repeated below for 

convenience: 

*I(t,T) = Ŵ (t, t0 + T) (54) 

or 

*i(t,r) = W1(t, T - t0) (61) 

for physical realizability, Ŵ (t,T) = 0 if t > t and t < t0. 
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This implies that Ŵ (T,t) = 0 for r > T as is to be expected. 

Expanding the ensemble averages, it is seen that the 

following correlation functions are required: 

C1 - SJTETTxJTET (62) 

Cg = (tg)AX̂ (t̂ ) (63) 

c3 = X̂ T̂ IÎX̂ TÇT (64) 

— AX̂  ( t̂ )AXĵ  ( tg) (65) 

1. Description of error sources 

In deriving the expressions for the correlation functions 

ĉ  through ĉ  in terms of input parameters which follow, the 

ensemble averages of three quantities will be required: 

(1) X̂ 0» (2) *i(ti)*i(tg), and (3) ÂP̂ lÂP̂ Ttp". X1Q is 

the initial value of the ith component of error x> is the 

gyro drift rate of the gyro with input axis along ẑ , and AP̂  

is the error in observation of the star vector along axis p̂ . 

Other cross correlation terms arise in the expressions 

for ĉ , but because of the independence of AP, c, and XQ, 

these terms are zero. Specifically terms 

APixjO ' APi'j = *10*j = 0 (66) 

From physical considerations, there is little doubt about the 

independence of AP and c, since they arise in two separate 
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equipments. However, since the vector £ is one of the driving 

functions for component x̂ , one may question the validity of 

setting X̂ QĈ  equal to zero. In fact, for the relatively 

short periods of time during which % is to be estimated (up 

to 4 hours), it is assumed in the derivations below that there 

is a specific short time functional dependence between x̂  and 

ĉ . On the other hand, many other sources of error contribute 

materially to X after extended periods of operation; errors in 

the accelerometers, gyros, and external velocity measurement 

of other channels are introduced into X̂  as a result of inter-

axis coupling. These factors are ordinarily small, but after 

long operational periods it is reasonable to expect that the 

cumulative effect of all error sources make X̂ Q essentially 

independent of ĉ . From similar arguments, it is assumed that 

l̂Ô jO =  ̂ 3̂ 1 (67) 

Now consider the correlation ë̂ TJ. Again from physical con­

siderations we have that 

= 0 for 1̂ 3 (68) 

since $1 and ê  arise in two different instruments. For i 

equal to 3, we define 

«l( V«i( V = #*l(f) (69) 

where T = tg - t̂ . It is customary to assume that is a 
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random process composed of two parts: 

(1) A stationary random component, ĉ , with zero time 

and ensemble average; 

(2) A random bias component c^Q which represents the 

average value for the particular function ê t) 

taken from the ensemble of possible functions. Tfe 

assume that the ensemble average, ĉ Q, is zero. 

Accordingly, Equation 69 may be written as 

Ci(ti)«i(t2) = C *io * ®i^l^ ] C*io + *l(*g) 3 (70) 

Since c (̂t) is a stationary random variable with zero mean, 

Equation 70 becomes 

•i(ti)Ci(t2) = + eî(tl)*î(t2) (71) 

where the bar over the second term can represent either a time 

average or ensemble average. Further 

#i(tiK(t2) = «î(tx + T)«î(ti) (72) 

The quantity on the right is simply the usual autocorrelation 

function for a stationary random process, denoted here by 

0̂ 1(t). Thus 

,i(tl)'i(t2) = *io + #«i(?) (73) 

where t = t2 - t1. 

Finally consider the correlation of the components of AP. 
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In terms of the orthogonal unit vectors ̂  and jgg, 

AP = APi£i + AP2£2 

Since the tracking loops associated with the p̂  and pg axes 

are independent and since p̂  and pg are orthogonal, 

AP̂ APg = 0 (74) 

Further AP̂ (t) is normally a stationary process so that 

= âPgl̂ MPgltj.) = JZfp (T ) (75) 

where t = t2 - t̂ . In Equation 75 it is assumed that the 

tracking errors are statistically identical in each channel. 

2. Derivation of the term Xi(t-L)Xj_(tg) 

Reference to Figure 5 shows that if the interaxis coup­

ling is neglected, the short term characteristic of X may be 

expressed as 

.t 
Xi — X^q + J (a)dû (76) 

to 

Thus using the notation defined in Equation 62, we may express 

Xi(ti)Xi(t2) as 

______________ t 
C1 = Xi(ti)Xi(t2) = Cx10 + J* e1(o1)da1] x 

t° 

dXiO + «T *1(̂ 2)̂ ]̂ 
to 
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This may be written as 

-Ô- „t t ____ 
°1 = xi0 + L L •i(al),i(a2)dalda2 (77) 

o o 

In Equation 77 we assume x^Q and are independent as dis­

cussed in Paragraph III.C.I, above. 

Letting = t0 + 01 and = tQ + 02 gives 

°1 = xi0 + J".2 °»Jnl ° *l(to + Sl,ci(to + »2)4ï1 (78) 

Since is a stationary random process, Equation 78 becomes 

t2"to t̂ -to 
=! = X̂ 0 + J ~ '̂ o ' - S2)d#l (79) 

Substituting Equation 73 in Equation 79 gives 

C-̂  = X̂  ( t̂ )Xi ( tg) 

= xi0 + I~ + - »2> ]a»i 

tl-to (80) 

3. Deviation of the term 2x[T̂ TXjT̂ T 

The error AX given by Equation 49 is 

AX = - ~FAP.fi + l-Q x P] £ - AP x P (81) 

where AP represents differentiation with respect to time for 
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any set of axes. Expressing AP as 

AP = AP̂ Pi + APgPg (82) 

and noting that Equation 81 is for zero declination gives 

AX = y~E~ A*PX + «*£2 + APiE2 - APgP̂  (83) 

The 1th component of AX is obtained by forming the scaler 

product of AX with z, -- - "~i 

AXi = - APi + l'Pg]- + âi'Ea - ap2Ei| *-i  (84) 

It Is convenient to introduce the notation Ẑ (t) defined by 

Zi(t) = (85) 
J 

Using this notation with P = Equation 84 becomes 

AXj/t) = APx(t) + c(t).£2]Ẑ (t) + AP-jẐ t) 

1 x (86) 
- AP2Ẑ (t) 

Multiplying Equation 76 by 86, and noting that X1Q is not 

correlated with any term of Equation 86 gives 

t2 
c g = AXi (t̂ )X̂  ( t2) = 1 Ẑ  ( t ̂ )£ ( t-̂  ) • p2 J" (®) do (87) 

(0( *0 

In Equation 87, we have used the fact that c and AP are uncor-

related. 
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The term c (t-̂ ) «Pg may be written as 

u| 'uW'4 = j, «u<VZu(V <88) 

Thus 

°2  =  lof J l  ' lC)d= (89) 

Interchanging the order of summation and integration gives, 

for CG, 

to 3  ̂
C 2  = -1- J 2 da E t  I t , )»,  (a) Z2 ( t i )Z&t,)  (90) 
 ̂fi t u=l u 1 1 u i 1 i 

0 

Since *u<i = 0 for u 4 i, Equation 90 becomes 

t2 

° 2  = 7JJ7 It da *i(tl)*i(*) 
0 (91) 

tg ____ 
= -j~- Z1(t1)Ẑ (t1) d<,2o + 0*i(* - t], ) U 
|o| A x 1 t o 

Making the change of variable a = t + 3, Equation 91 may be 

written as 

Cg — A*l(̂ l)*1(̂ 2̂  
t,-t, (92) 

- "j~j* zi(*1)2̂ *1)̂  l*lo + #li(B + - tx) ]d@ 
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4. Derivation of the term X̂ ft̂ AX̂ tg) 

The term ĉ  = XÏT̂ ÎTSX̂ T̂ T may be obtained by interchang­

ing tx and t2 in Equation 92. Thus 

°-z = Xi ( t1)AXi ( tg) 
t-t _ <93) 

= ]£| Zl(t2)Zl't2)J'01 °C*10 + + *0 - t2) 

5. Derivation of the term Ax̂ t̂ AX̂ tg) 

The equation for AX̂ (t) is given in Equation 86. 

Forming the product Ax̂ t̂ Ax̂ tg) = ĉ  gives 

c4 = pCl(ti)eP2 " ̂ (t].) ] x 

3/j. x„3 

(a) 

C«(tg)-£g - ̂ (tgJHZ^tiJZ^tg) 

+ AP-̂ t̂ AP̂ tg) z2(tx)z2(tg) (b) 

+ APg(tx)APg(tg) Ẑ t̂ )Ẑ tg) (c) (94) 

" "jnf 42pi( t2 )AP1 ( t i )  z^(t2 )z2(tx )  (d) 

- ~~ A%i(ti)APi(tg) Ẑ t̂ Ẑ tg) (e) 

+ other cross product terms equal to zero 
since £, AP̂ , and APg are all uncorrelated. 

Consider term 94a. Since « and AP are uncorrelated, it 
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becomes 

94a = ̂ {Cl(ti)'£2̂ Cî-(t2)'E2̂  

, , (95) 

Expansion of the terms in c gives 

94» = 4?[u| jx 2 }  

(96) 

+ AP1(t1)AP1(t2) Ẑ t̂ iẐ tg) 

The gyro drift rates are uncorrelated so that Equation 96 

becomes 

94a = fgzf(t1)zf(t2) { I • ̂u(t2 - tx) ]Ẑ (ti)Z2(tg) 
n ^u—1 

1 (9 
+ AP1(t1)AP1(t2)|' 

Further, if the gyros are Identical, then their statistical 

characteristics are identical. Under these circumstances 

Equation 97 is 

94a = ̂ (tJẐ tg) |3C«o • ̂(*2 " »i)]̂  ̂(*l)Zu(*2) 
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AP̂  is stationary so that the last term of Equation 98 may be 

expressed as a time average in the variable T = tg - t-̂ . Thus 

T 
AP-, ( t-, )AP9(t0) = lim -L f d[lAP1(t + t) 3 dCAPx(t) ] 

1 ^ 2 T -> OO 2T / ât dt dt 

-T 
(99) 

Integrating Equation 99 by parts gives 

âP̂ t̂ âP̂ tg) = llm̂  œ 4Pl(t) r 

1  .2 

T 

T 

(100) 

/ APl(t) ̂ Pl(t,T) , 

-1 dt J 

For physical processes the first term is zero. Further the 

derivative with respect to time in the second term may be 

replaced by the derivative with respect to t since the varia­

ble in the integrand is t + T. If we change the order of 

integration, limit, and differentiation, Equation 100 becomes 

_ 2 T (101) 
A£i(ti)APi(t2) = - % lim ~ f AP,(t)AP,(t + t)dt 

dr* T œ dT -T 

The term under the integral is simply the autocorrelation 

function of AP̂ . Hence 

j2 
-— * (102) 4P1(ti)4î1(t2) = " ̂ 2 VT >  

T — tg—t̂  
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where T = tg -

Thus the term 94a is given by 

' *  •  $  ' I ' V ' l ' V  { -  « j j  V  , ,  V > 1  

_ (103) 

+ 3[«o + 0 i l t z  - h)3Jx z„(ti>z2<v} 

The term 94b is immediately recognized as the autocorre­

lation function of AP̂  multiplied by the geometric factors Ẑ . 

Thus 

94b = 0p(t2 - t1)Z2(t1)Z2(t2) (104) 

Similarly 

94c = 0p(t£ - (105) 

Using a process similar to that used in Equation 102, we 

may compute the term 94d as follows 

94a = " 777 zf(tg)z2(t.) âï1(t,)AP1(t1) 
l°l 1 (106) 

= - zi<Vzi(ti> / ̂4r—̂ -6Pi(t)dt 
Il _ J 

Replacing the derivative with respect to t by one with respect 

to T, and interchanging the order of operations gives 
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94a = - Ï5T 2i<Vzi<V ff'p<T) (107) 
T — TG-TI 

where T = tg - t-̂ . 

The term 94e may be written immediately from Equation 

107 by interchanging t̂  and t̂ , and noting that1 

37 ̂ptT> T=T- T=-T-

Thus 

94e = + ]H7 zi(ti)zi(t2> T — T<3 — TI 
(108) 

Adding Equations 95, 103, 104, 105, 107, and 108 give, for ĉ , 

c I, = AX1(t1)AX1(t2) 

= ̂ Zi(h)Z13(t2){-£â0p(T)|T = t2_ti 

+ 3Ĉ  + 0i(r) J1 Z„(ti)̂ (t2)j 

+ 0p(tg - C  ̂

(109) 

-  W 57 *P ( t )  T=t2-t1 

Ŝee Laning and Battin (2). 
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For convenience we repeat Equations 80, 92, 93, and 60 

below 

°3_ — Xi 11̂  J ( tg ) 
(80) 

= To + If ° ° !>I * ̂  - »2) H«i 

Cg — Xj(tg) 

t2 - t  _  (92) 

= / °c«o• *;<•+*„ - »i) :« 

Cj — x̂ TtpâXjitg) 

*l- t0  _ (93) 

= 'jHT Zi(t2)Zi(t2' /0 C«o • <*;<» + *0 - *2)]d@ 

The integral equation for the optimum weighting function is 

,T 
/ *l(T,Ti)[Xi(tg + T1) + AXi(to +Tl)]x 

CXi(t0 + T) + AXi(tg + T) ]dTx <60> 

- %i(to + T)[Xi(to + T) + AXift̂  + T) J = 0 

Each of the terms required in Equation 60 are given above in 

Equations 80, 92, 93, and 109. In order to see the essential 

characteristic of Equation 60, it may be written in the fol­

lowing form: 
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Wi(T»T1)J1(T,T1)dr1 - Ii(T,T) (110) 

In Equation 110, Ĵ (T,T̂ ) is 

Ji<T-Ti) = 4o + Cif2 C1 C«o + - »2> Ud»i 
0 0 

+ iïïf zi(t=+ T)ziX+ T'Vi:«o+ W - T)^dB 
Tlp 2 

+ -|jj- (̂to + Tl)Zi(to + Tl̂  C«o + " TV 3 d* rT 
0 

*  ̂  Z i ( t0 +  T l ) Z l ( to * T )  ^2 V# )  
@ = T-T 

+ )[«0 + ̂ i(T - Tl' ] Z ẑ (t0 + Tl)Ẑ (t0 + r)l 
U~i J 

* e,p(T"Tl)EZi<VTl)ZitVT) + Zl(t0+Tl)Zl(t0+T) ] 

à Is Ve» .  T  C<(t0 +T)^(W 
P=T-T1 

- zi<VTi)zi(VT) 3 

(m) 

Similarly 1̂  may be expressed as 

XL(I.T) = To * £«2 JJT'O + Wl - E2> ]«1 

 ̂ 1 .2,. . ,„3 
|0| 

Ẑ (t0 + T)Ẑ (t0 + t)/q C«f + - T) 

(112) 

Unless the forms of 0, and 0p are specified, Equations 111 and 
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112 cannot be reduced further. 

D. Residual Error after Optimum Filtering 

The ensemble average error squared is given by Equation 

56. Rearranging gives 

6X̂ (t0 + T) = xf(tQ + T) 

T f T 
+ J «^(T.rjdr j T ̂  ( T, T1 ) C) +AXi ( t0+T -L Qx 

CXI(t0 + T) + AXI(TG + T) ]dT^ (113) 

- 2 XJ^tt,, + T)[XI(TO + T) + 4X1(t0 + T)] 

Substituting Equation 60 for the integral with respect to 

gives the error after optimal filtering as 

6X̂  = xf(t0 + I) 
(114) 

T 
- J *1.(1,T) Xi(tg + T)C*i(t0 + T) + AXi(tg + T) ]dT 

It should be noted that the ensemble average in the integrand 

of the second term is given explicitly by Equation 112. The 

first term may be obtained from Equation 80, and is 

X^(tQ + T) = X^q + dPg C'o + ^#(*1 ~ ^2^ -1^1 (115) 

Equation 114 gives the residual error of the estimate of 
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Xj_ at time tQ + T after optimum filtering has been performed 

on the raw estimate. 

B. Computation of the Geometric Factors Ẑ (t) 

In Section III.C. the factor z£(t) was defined as 

zj(t)  = p • ^(t)  (116) 

where and are the unit vectors of the p- and z-coordi 

nate systems respectively. The position of the z-coordinate 

system is specified in terms of the coordinates latitude 6 and 

longitude X relative to a coordinate system fixed with respect 

to the earth, i.e., a coordinate system with one axis colinear 

with the polar axis, one axis in the plane of the equator and 

passing through the Greenwich meridian, and a third orthogonal 

axis which forms a right-hand set. This coordinate system 

shall be designated as the B-coordinate system, with unit 

vectors Eg, and By Similarly, the p-coordlnate system is 

customarily specified in terms of the declination, d, and 

Greenwich hour angle, Q, relative to the B-coordinate system. 

It should be noted that both the p- and z-coordinate systems 

have one axis north. Figure 7 illustrates the relative 

orientations. 

Applying the laws of spherical trigonometry, one may form 

the following arrays : 
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—3* 

62 

£-1 

-3 

^GREENWICH 
MERIDIAN 

a - GREENWICH HOUR ANGLE -WEST 

X = LONGITUDE - WEST 

Q - LATITUDE 

d = DECLINATION 

J FIGURE 7. GEOMETRY FOR COMPUTATION OF FACTORS Z '  
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3] 

Be 

B? 

cos e 

sin X sin 8 

cos X sin 0 

0 

cos X 

sin X 

sin 0 

sin X cos 0 

cos X cos 0 

Bn 

=; 
cos d 

sin a sin d 

cos a sin d 

0 

cos a 

sin a 

sin d 

sin a cos d 

cos a cos d 

If the first array is defined as the matrix A with gen­

eral term the term â  is the cosine of the angle betweei 

the unit vector B̂  and the unit vector Zy Similarly, defin­

ing the second array as the matrix B with general term , 

the term b̂  is the cosine of the angle between the axis 

and the £ axis. 
J 

How consider an arbitrary column vector, Rg, with compo­

nents expressed in the B-system. The components of R ex­

pressed in the z-system, Rz, are given by 

R
z  = (117) 

where A' is the transpose of the matrix A. Similarly, R 

expressed in the p-coordinate system, Rp, is given by 
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Bp = B'Rjj (118) 

Solving Equation 117 for Rj, and substituting in Equation 118 

gives 

Rp = B'ARZ (119) 

In Equation 119, use has been made of the fact that A and B 

are orthogonal matrices; thus the Inverse is equal to the 

transpose. 

The product A'B, designated as the matrix C is 

0 = (120) 

cos d cos 0 + „sin 0 sin(X-a) cos 6 sin d - \ 
sin d sin 0 cos(x-a) sin 0 cos d cos(x-a) 

sin d sin(X-a) cos(x-a) -cos d sin(X-a) 

sin 0 cos d - cos 0 sin(X-a) sin 9 sin d + 
cos 0 sin d cos(x-a) cos d cos 0 cos(x-a) 

Inspection of Equation 119 reveals that general term of 

the matrix product A'B, denoted here as ĉ , is simply the 

cosine of the angle between the unit vectors and . As 

an example, the cosine of the angle between the and pg 

axes is 

- sin 0 sin (X-o) 

From Equation 116, it is seen that the general term ĉ  

is simply Ẑ . Thus 

zi = cij <121> 
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For computation of the optimum weighting function de­

scribed in this section, the factors for zero declination 

are needed. For this case the matrix 0 becomes 

C = 

cos 9 - sin 9 sin (X-a) 

0 cos (x-a)  

sin 9 cos 9 sin (X-a) 

- sin 9 cos (x-a)  

- sin (X -a)  

cos 9 cos (X-a)  

(122) 

Accordingly, if the declination is zero, the factors Z£ may 

be tabulated as shown below: 

ẑ (t) 

z|(t) 

t) 

Zg(t) 

z|(t)  

Z?(t )  

Zj( t )  

z|(t)  

Zj( t )  

= COS 9 

= - sin 9 sin [x-a(t) ] 

= - sin 9 cos [x-a(t) ] 

= 0 

= cos [x-a(t) ] 

= - sin [x-a(t) ] 

= sin 9 

= cos 9 sin [x-a(t) ] 

= cos 9 cos [x-a(t) ] 

(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

(130) 

(131) 

It should be noted that the latitude, 9, and the longitude, 

X, have been treated as quasi-constants. The quantity X-a(t) 

is usually referred to as the local hour angle of the star. 
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IV. RESTRICTED SOLUTION FOR Ŵ T.-r) 

In the general case, there Is no closed form analytic 

solution for the optimum weighting function W (̂T,T) given by 

the Integral Equation 60. Accordingly, the design of a hybrid 

celestlal-lnertlal navigation system using the techniques 

described In Section III must of necessity be based on numeri­

cal solution of the Integral equation. However, It Is inform­

ative to consider two special cases for which solutions may be 

obtained in order to gain some insight into the nature of the 

problem. In both cases an equatorial geometry shall be 

assumed, i.e., zero latitude and declination. 

A. Solution for W T̂jt) with T Approaching Zero 

Equation 110 gives the Integral equation for Ŵ (T,r) as 

T 
J - I1(t>t) = o (132) 

The functions J1(T,T1) and I^T.R) may be obtained from Equa­

tions 111 and 112 with 1=1. For the case considered here, 

they are 

Jx<T'Ti) = *îo * * VT-Ti' 
0 0 (133) 

and 

Il(I.T) = xfo + J"o
d»2J"0 C«o + %(*l-*2) ]d@l (134) 
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In Equations 133 and 134, Equations 123 through 131, with 

0 = 0, have been substituted for the factors zj|(t) appearing 

in Equations 111 and 112. 

For typical gyroscopes and star trackers, the functions 

0,(T) and 0p(R) are of the form 

0̂ (T) = a2e °'T' 

and (135> 

0p(r) = b2e 

Since 0 < T, < T, for T approaching zero, Equations 133 

and 134 reduce to 

and 

J1(t,t1) SB x20 + b2 (136) 

Il(?,T) = X2q (137) 

If Equations 136 and 137 are substituted in Equation 132, 

the integral equation for Ŵ (T, f) becomes 

11m J*T VT'Tl)C*?n + b2̂ dTl = xio (138) 
T 0 0 10 A xu 

This equation is valid only if 

Wl(T,T) = kft(r) (139) 
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The unit impulse function at T = 0 is denoted by Ô(T). 

Equations 139 and 140 place in evidence the dependence 

of the optimum weighting function on the relative magnitudes 

of the parameters and b2 (and in the general case, c2 as 

well). This is due to the fact that in deriving the integral 

equation for V̂ (T,T) we did not require a perfect solution for 

the error vector X in the absence of instrumentation errors. 

Clearly, if the parameter X2Q is very small relative to 0€(0) 

and 0p(O),̂  one would not want to heavily weight the informa­

tion provided by the star vector in forming the estimate of 

the vector X. This fact is reflected by Equation 140 which 

shows that k is very small under these circumstances. Con­

versely, if X̂ 0 is large relative to (0) and 0p(O), the star 

vector information should be strongly weighted. In this case 

k becomes unity. 

The ensemble average of the residual error squared may 

be obtained from Equations 114 and 115. For T approaching 

zero, Equation 115 becomes 

%f(v = Wo (ui)  

Noting that the correlation function in the integrand of 

Equation 114 is simply 1̂ (1,1-) where Î T.r) is given by 

Vf(O) and 0p(O) give the mean square value of the gyro 
and star vector measurement errors respectively. See Lanlng 
and Battln (2). 
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Equation 137» the ensemble error squared given by Equation 114 

becomes 

6X2 = %2(t ) - lim J V (T,T)I1(T,r)dr (142) 
T -> 0 0 X 

Substituting Equation 139 for ¥̂ (1,T) and Equation 137 for 

Î (T,T) gives 

ôX2(t ) = X (t ) - lim kj* Ô(T)X2 dr (143) 
io io t o 0 10 

Integration yields 

X?„T>2 
#X?(t0) = =12 (144) 

In obtaining Equation 144, it should be noted that X2(tQ) is 

equal to X2Q. 
—75— 

Again let us examine the case for X̂ Q large relative to 

2 b . The residual error is then simply 

ÔX2 * b2 (145) 

which is the mean square error in the measurement of the star 

vector. We recall that k given by Equation 140 is unity for 

this case. Since the solution has been restricted to small T, 

one would not expect the optimal filter to be effective in 

reducing the residual error. This fact is reflected by Equa­

tion 145. 
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2 2 If X q̂ is small relative to b , the error becomes 

ÔX2 » Ç (146) 

The coefficient k in this case becomes very small indicating 

that the optimal filter has little effect on the residual 

error as is to be expected in view of Equation 146. 

In assuming that T is very small, the errors due to gyro 

drift rate have not entered the problem. This restriction is 

removed in part in the following section. 

B. Solution for K-^(T,T) for Arbitrary T 

Integral Equation 132 for tf1(T,r) with correlation func­

tions Ĵ T,̂ ) and I-̂ T.T) given by Equations 133 and 134 

respectively, apply to the case considered here. Tfe now 

assume that 

0}(t) = 0 (147) 

and 

ft (t) = b26(r) (1*8) 

where 6(T) is the unit impulse function.1 

1Inasmuch as autocorrelation functions are symmetric, the 
unit impulse function used here is symmetric, i.e. ô(t-tQ) = 
6(t0-t). As a result of this definition we have 

T T 
J* 6(r)dr = J" 6(T - r)dr = 1/2 
0 0 
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These assumptions are not as restrictive as they may seem. 

In precision gyroscopes, the bias component of gyro drift rate 

is typically an order of magnitude larger than the random 

component. Further, the reciprocal of the effective noise 

(error) bandwidth of practical star trackers may be much 

smaller than the parameter T, and hence, Equation l4g is a 

valid approximation for 0p(r). 

Substitution of Equation 14? and l4g into Equations 133 

and 134 give 

J1(T,T]L) = xf0 + J*jde2 Ĵ 1 «2dP1 + b2Ô(R - Tx) (149) 

and 

Iltl. T )  =  T O  +  («2 ( «04,1 (150) 

Integration of Equations 149 and 150 yield 

J1(T,T1) = X2
O + + b2Ô(R - TX) (151) 

and 

(̂T.T) = + «q TT (152) 

Using Equations 151 and 152 in Equation 132 gives the integral 

equation for W1(T,r) as 

Let us assume a solution of the form 



www.manaraa.com

62 

V1(T,T1) = 

CT + °2 Tl' 0 < Tn < T 

20 

2 0j 

= 0 

T1 = T 

(154) 

Substituting this trial solution in Equation 153 gives 

! [ »  °1 + °2T1 

2O4 C*10+ VTi]dTi 

/ 
°1 + °2T1 
2O3 
20,, 

b2ô(T-T1)dr1 = x^Q + «qTT (155) 

The value of the integrand in the first integral may be arbi­

trarily chosen at a finite number of points. Accordingly we 

choose Ŵ (T,0) = 0̂  and ¥̂ (T,T) = 0̂  + Ô T. As a result, the 

following equation is valid for all 0 < r1 < T: 

I °1 
+ °2t1 
2O3 
2 0 j, 
[ *10 + C0TTl]dTl 

= jr («1+ °2Ti)Hxf0 + 

(156) 

Integration of Equation 156 gives 
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/ °1 
+ °2t1 

2 03 

L 204 
[*10 + ,0TTl]4Tl 

(157) 

-  .  3£ ] .  < i§£ .  * £ ]  
~y»a .2.-3 

The second integral of Equation 155 is 

T 

/ v3°*Ti 2 0,, 

b 6(x-r1)dT1 = 

r b2(01 + 02T ) ;  0 <  T  <  T 
B2CJ ; T = 0 

b2C4 ; T = T 

(158) 

Substituting Equations 157 and 158 into 155 give the follow­

ing set of equations: 

For 0 < T < T, 

,[> • ¥] • 
*îo^ 

2L 2 •¥] 
+ b2(0x + 02T) = x2q + C2tT 

(159) 

For T = 0, 

B1*10T + "N2- * b C3 
= X 

10 
(160) 

For T = T, 
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b2°4 = *10 + «0l2 

(161) 

Equation 159 must hold for all 0 < r < T; therefore, equating 

the constant terms and the r dependent terms gives the follow­

ing pair of simultaneous equations in 01 and Og: 

—— 2 2 

+ »23 * 02 = X2Q (162) 

and 

Solution of Equations 162 and 163 for 0̂  and 02 yield 

0l = (164) 

x10TC«ol3 + IZt2] + 4b2C«ol3 + 3b2] 

and 

-,. _ -, ,««, 
X10T̂ C0t3 + 12b 3 + H*oT + ̂  ] 

The constants 0̂  and 0̂  may be obtained from the pair of 

Equations 160 and 161. Solution gives 

0-
2 

*10 

and 

0, = =A= (166) 
3 2 
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°i r ÎOÎ!i «Ot2 2 
4 = 1 + -=F + "V(4 - (167) 
%L 3Xio J 6b2 

Thus Equation 154, together with Equations 164, 165, 166, and 

167 which give the constants, represents the solution for the 

optimum weighting function for the case considered here. It 

may be noted that the solution is not a function of the ini­

tial time tQ. This is a consequence of the equatorial geome­

try which has been assumed. 

The behavior of Equation 154 may be studied by consider-
o 5̂ 2 

ing a specific set of parameters x£Q, c Q ,  and b . For a 

typical system, these parameters may be 

e2 = 10-7 mln2-sec~2 

X20 = 5 min2 (168) 

b2 = 5 min2-sec 

~~2 The value of eQ chosen above corresponds to a gyro drift rate 

bias of approximately 0.015 degrees per hour rms. Using these 

parameters, one may compute the coefficients shown in Table 1. 

Inasmuch as ¥̂ (T,O) and ̂ (T,T) do not contribute to the 

filter output nor to the calculation of the residual error, 

the values of the constants 0̂  and 0̂  are not of significant 

importance. However, they are listed for the sake of rigor. 
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Table 1. Coefficients of W1(T,r) 

T (minutes) 0̂  Ĉ  Ĉ  0̂  

1 1.639 x 10™2 0.607 x 10"6 0.328 x 10~2 0.328 x 10™2 

5 0.2892 x 10"2 0.2879 x 10~5 0.0578 x 10~2 1.78 x 10"5 

30 -0.9524 x 10~3 1.6753 x 10"6 -0.1905 x 10"3 1.52 x ÎO-2 

-> oo -2/T 6/T2 
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The ensemble average error squared is given by Equation 

114 which is repeated below: 

6Xi = Xî o + T> (114) 

- (̂T.r) Xi(tQ + T)[%i(to + r) + ̂ X±(to + T) ]dT 

o 
The term X̂ (tQ + T) may be obtained using Equation 115. For 

the case considered here 

X2(t0 + I) = X20 + «212 (169) 

The correlation function in the integral of Equation 114 is 

simply Î (T,T). Again for this case 

I1(T,t) = X2Q + «̂ TT (170) 

Thus Equation 114 may be written as 

6X I = X10 + *ot2 - ̂  *1<T>T> C*i0 + ̂ T]a, (171) 

where ̂ (T.r) is given by Equation 154 with coefficients 

tabulated in Table 1 for typical values of T. As stated 

earlier, the values Ŵ (T,0) and V̂ (T,T) may be chosen arbi­

trarily without affecting the computation of 6X2. Accordingly, 

in Equation 171 one may use 

(̂T.R) = Ox + 02T 0 < T < T (172) 

Substitution of Equation 172 into Equation 171 and performing 
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the integration gives 

6X1 - X10(1 * °iT " l2) * *ot2(1 " T 1 " ̂  t2) (173) 

Using the tabulated values of 0̂  and Cg in Table 1 in Equation 

173 gives the values of 6X2 shown below in Table 2. The 

improvement in the estimate of x̂  with increasing T is evident 

from the data. 

Table 2. Computed residual error 

T (minutes) (6X2)1/2 

1 7.77 x 10"2 0.28 min. 

5 3.46 x 10~2 0.18 min. 

30 1.73 x lO~2 0.13 min. 

-> oo -» 0 0 

It is interesting to compare the range of T with the 

drift-rate "correlation time" of practical floated gyro­

scopes. topically T is of the order of minutes, whereas the 

correlation time of the random portion of the gyro drift rate 

may be several hours. Accordingly, the correlation function 

0HT) * a2e 

which we assumed to be zero in the above analysis, may actually 
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be treated as a constant, a2, in the integral equation for 

W1(T,T). Thus the optimum weighting function derived above 

is also optimal for this more general case if we replace eQ 

by e2 + a2. 
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V. CONCLUSION 

Rapid advances in the technology of inertial navigation 

systems have been made in recent years which have been due in 

part to a corresponding improvement in gyro technology. Gyro­

scope performance is currently the limiting factor in marine 

inertial navigation designs and will probably continue to be 

so unless an order of magnitude improvement in gyro perform­

ance can be achieved. As a result there is a real need to 

provide an external reference, preferably passive, which can 

be utilized to compensate for the long-term gyro drift charac­

teristics. As stated earlier, star observations made either 

optically or radiometrically can provide this reference. Be­

cause of the limited number of radiometric celestial bodies, 

this study has been devoted to the development of a correction 

technique which utilizes a single star vector and the earth's 

rotation vector to uniquely determine the inertial system 

error vector. 

The operational restrictions of the hybrid celestial-

inertial system are treated in Section III and need not be 

discussed extensively here. Briefly, measurement of a star 

vector was postulated during the time interval tQ through 

tQ + T. At the end of the observation period, an estimate of 

the system error vector, X, is to be made based on an optimal 

linear time-varying filter operating on the data obtained from 
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the star vector during the Interval T. 

To accomplish this result two equations must be mecha­

nized. The first, Equation 46, defines the error vector in 

terms of measured and computed components of the star vector 

and its rate of change relative to the inertial navigation 

coordinate system. This equation provides a "continuous" raw 

estimate of the inertial system error in the interval tQ to 

tQ + T. 

The second equation which must be mechanized is Equation 

51» the convolution integral, where Ŵ (t,?) used in Equation 

51 is given implicitly by Equations 54 and 60. As stated 

earlier, no explicit closed-form expression for (T, T) has 

been obtained for the general case. However, Ŵ (T,T) may be 

obtained approximately by numerical solution of Equation 60 

for the geometries which one may encounter. The optimal 

filter normally cannot be realized as a lumped-parameter 

filter, and may prove difficult to mechanize by digital means. 

As a result, it is customary to approximate the optimum filter 

with a less than optimum device which can be implemented. In 

this connection, this study may prove to be of significant 

value in that it provides a lower bound on the residual error 

with which the efficiency of the approximating device can be 

compared. Clearly, the function *i(T,T) provides the charac­

teristic which is to be approximated as well. 

In executing this study certain assumptions concerning 
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the characteristics of the error sources have of necessity 

been made. Perhaps the most fundamental is the assumption 

that the level errors in the inertial system, described by the 

vector components and C2» are small. This condition is 

realistic for a precision system and does not materially 

restrict the validity of the study. An assumption which is 

somewhat more restrictive is inherent in the error model 

chosen for the basic inertial navigator. In developing the 

error model, and in subsequent computations, the effect of 

interaxis coupling due to position and azimuth errors has been 

neglected. This assumption does not alter the usefulness of 

the techniques described here, but it may affect the manner 

in which they are applied. Specifically, the functions 

Ŵ (T,T) may not be optimum if there is significant interaxis 

coupling. If the system has been operating in its pure iner­

tial mode for an extended period of time so that pronounced 

interaxis coupling may exist, an interim correction, based on 

a relatively short star observation, should be made to reduce 

the components of the error vector X below approximately five 

minutes of arc. Following the interim correction, the normal 

correction may then be employed. 

In the derivation of the correlation functions of Section 

III.0.1, the gyro drift-rate error has been assumed to be 

stationary in the statistical sense. This assumption is not 

fundamental to the derivation and may be omitted if desired 
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provided the corresponding correlation functions are changed 

accordingly. However, the stationary property is commonly 

used, and normally represents a reasonable approximation for 

precision floated gyros. 

This study has been devoted principally to development 

of a method for forming a best estimate of the inertial system 

error. The method by which the system is actually corrected 

with the computed estimate of error, has been discussed only 

briefly. Fundamentally there are three methods for system 

correction: 

1. A single correction may be applied at time t0+ T, 

which has been computed from star data taken over the 

interval of duration T. In this method a single 

filter characteristic, optimum with respect to the 

parameters t0, T and the geometry, operates on the 

raw error data over the interval T to provide the 

optimum estimate at time tQ + T. 

2. Multiple corrections may be applied at times t̂ , tg, 

•••, tn to provide a semi-continuous correction. The 

1th correction is computed from data taken over the 

interval from t̂  - t̂ „i and the ith filter charac­

teristic is chosen on the basis of the parameters 

t̂ _2 for the initial time and t̂  - t̂ _̂  for the 

observation interval. If the total elapsed time 

between t@ and tQ is T, then this method is less 
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accurate than method 1 for all t̂  since in general 

each estimate is made on the basis of an observation 

time less than T. 

3. If the raw estimate of the system error can be stored 

as a semi-continuous function of time, or if n 

filters are simultaneously available, multiple cor­

rections can be applied as In method 2 without the 

resultant increase in residual error. The ith cor­

rection is computed from data taken over the interval 

ti - tQ and the ith filter characteristic is chosen 

with respect to that interval and tQ. The residual 

error at time tQ + T is the same as that for method 

1. It should be noted, however, that after any cor­

rection has been applied, all subsequent data must be 

compensated In accordance with the applied correction. 

The choice of the most appropriate method is dependent 

on the system operational requirements. The first method is 

clearly the simplest to mechanize and should be adequate for 

most applications. 
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VIII. APPENDIX A: RELATION BETWEEN THE UNIT VECTORS 

OP TWO NEARLY-COINCIDENT COORDINATE SYSTEMS 

Consider two orthogonal coordinate systems denoted by y 

and z with unit vectors yg, ŷ  and ẑ , Zg, ẑ  respectively 

(see Figure A-l). If the angle between each pair of unit 

vectors and is small, the vectors ẑ  may be expressed 

In terms of the vectors ̂  and a rotation vector £ which de­

scribes the small rotations about the ̂  axes which are neces­

sary to rotate the y-coordinate system into the z-coordinate 

system. Let £ be defined as 

i = <i£i + CgZa + h*ô (A"1) 

where denotes a small rotation about the axis. From 

Figure A-l it is seen that 

% = + C3IL2 - C2£3 (A-2) 

Similarly 

Zg = (A-3) 

% = 1} * C2̂ i " ci2e <A~4) 

Expressions A-2, A-3, and A-4 may be written as 

% = Zi + £ 1 Zj. (A-5) 

In Sections II and III, similar expressions for an arbi-
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12 

FIGURE A-l. VECTOR ROTATIONS OF NEARLY COINCIDENT 

COORDINATE SYSTEMS. 
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trary vector V are required. Let Vz be a vector whose compo­

nents In the z-coordinate system are given by the relation 

I. = Vl + V=2*2 + T=323 U-6) 

Let Vy be defined as the vector whose components in the y-

coordinate system are equal to the components of in the 

z-coordinate system, i.e., 

2y = + vZ2Ï2 + Vz/3 (A-7) 

Using Equation A-5, Equation A-7 becomes 

2y = + TzgfZi - i * l2> + VZ3(z3 - i I £3) 

(A-8) 
For small rotations 

£ X ZI - I X % (A-9) 

Therefore Equation A-8 may be written as 

ïy = I* " £ 1 U-10) 
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IX. APPENDIX B: SUFFICIENCY TEST OF THE 

INTEGRAL EQUATION FOR Ŵ (T,T) 

In Section III, the necessary condition which ff̂ (T,T) 

must satisfy for the residual ensemble average error squared 

to be minimized was shown to be 

T 
JTq w1(T,T) + t1) + + Tl) ] I 

+ T) + *X±{*0 + T) IDT-L (60) 

- *I(to + T) CXi(t0 + T) + AX1(tQ + T) J - 0 

This condition is also sufficient as may be shown by replacing 

Tfj,(T,r) by another function 

W^(T,t) = *I(T,T) + aK(T,r) (B-L) 

where K(T,T) may be any arbitrary function of T and R. The 

ensemble average error squared is given by Equation 56 with 

Ŵ (T,T) replaced by Ŵ (T,"r) of Equation B-l, above 

T T 
»x2(a) = ̂ [Vi(T,Ti)+aE(T,Ti) ][̂ (T,Tg)+aK(T,T2) ] x 

[XI(TG + + ?%)] % (B-2) 

CXI(T0 + T2) + AXI(TO + TG)]DTIDT2 + XF(TQ + T) 

T 
- 2̂  [*i(T,T)+aE(T,T)]Xi(to+T) % 
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C x i ( t 0  +  T) + AX^ ( t ^  + T) ]DT 

Using Equation 56, Equation B-2 may be written as 

0X2(a) = 6X2(0) + 2a/Jdr K(T,T) x 

[ \ ( VT1 )+ Axi ( to+Tl) 3 C ( t0+r ) +AX̂  ( t0+r ) 3 dTx 

- Xĵ tg + I) CX!(t0 + T) + AX1(t0 + T) U ]• (B-3) 

+ a2 {/JK(T,T) CXJL(T0 + r) + AX̂ (T̂  + T) ]dr} 2 

If Ŵ (T,T) satisfies Equation 60, it is seen that the second 

term of Equation B-3 is zero. Accordingly, Equation B-3 be­

comes 

_______ ——— j 
ÔX2(a) = ôxf(O) + a2 J* K(T,r)nx1(t0-f-T)+Ax1(t0+r) ]dr 

° . (B-4) 

The last term of Equation B-4 is the ensemble average of a 

squared quantity and is always greater than or equal to zero. 

Thus 

6X̂ (a) > 6X̂ (0) (B-5) 

for any arbitrary function aK(T,r). 

Accordingly, Equation 60 is a necessary and sufficient 

condition for V̂ (T,T) to produce the minimum ensemble average 

residual error squared. 
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X. APPENDIX C: DERIVATION OP THE EQUATIONS OF MOTION 

IN A LOCALLY LEVEL COORDINATE SYSTEM1 

Let r be the position vector of a point in space measured 

in an inertial frame of reference with origin at the center of 

the earth and with one axis collnear with the earth's polar 

axis. Let z denote the locally level set of axes with origin 

at R relative to the z-axes. The position vector of the point 

in space shall be denoted by £. (See figure C-l.) 

Let the derivative with respect to inertial space be 

denoted by and the derivative with respect to the z-coordi-
U U 

nate system by Accordingly, we may write 
dt 

s - g - g  » - »  

Using the Theorem of Coriolis, Equation 0-1 may be written as 

dr dR Dg. 
dï = ât + ât + ffiI£ (0"2) 

In Equation C-2, œ is the angular rotation vector of z-coordi­

nate system relative to the earth-centered coordinate system. 

Differentiating once more and again applying the Theorem of 

Coriolis, gives 

1This derivation is similar to those found in many 
references: see for example Lass (3). 
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Z-COORDINATE 
SYSTEM 

FIGURE C-L. VECTOR RELATIONS USED IN EQUATION C-L. 
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d2r d2R D2£ DM DP 
% 2  =  T 2  +  Z 2  +  d T ^ & + 2 m ^ â t + Ë i  ( S i  x  £ )  ( 0 - 3 )  
at d u  dt 

It should be noted that 2= = ̂ =. Now, if r = 0 and £. = - R, 

Equation 0-3 may be written as 

d2R D2R DID DR 
^ = ^ + d î  =  & + 2 2 = d î  +  Sl  =  ( i S X - )  ( ° - 4 )  

d̂  
Accelerometers measure the vector, A = —= - 6 so that Equa-

dt2 
tion 0-4 may be written 

D2R DOB DR 
A +  G  =  +  ̂ = x R  +  2 œ x ~ + » x  (  w  x  R )  ( 0 - 5 )  

where A represents the vector output of the accelerometers, 

and G is the gravity vector. 

Assuming that the earth is spherically symmetrical, a 

first order approximation for G is 

G = - £- R (0-6) 

where rQ is the radius of the earth and g is the gravitational 

field constant. Thus Equation 0-5 becomes 

er D2R DOB DR 
- " ^ - = d t ^ + d f X - + 2 - X ^  +  1 S X  X  - )  ( 0 _ 7 )  

If it is assumed that the z-coordinate system is locally 

level with axes ẑ > and north, west, and vertical, the 

following expression for R and its derivatives are valid 
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5 = r0—3 

9 .  î ! i =  0  
dt dt< 

(0-8)  

(0-9) 

Also, the angular rotation vector » written as a column vector 

is as follows 

00 = 

Z1 
®z2 

P*3 J 
J 

(0 -  X ) c o s  9 

9 

(O - X)sin 6 

1  

(0-10) 

In Equation 0-10, 0 is the scaler magnitude of the earth's 

rotation rate, X represents longitude and 9 represents lati­

tude. Substitution of Equations 0-8, 0-9 and 0-10 into Equa­

tion 0-7 gives 

A- r 9 
Z1 0 

AZ2 
= rQ£ (0 - X)9 sin 9 + X cos 9 J 

A„ 0 
3 i (0-11) 

rQ (Q - X) sin 9 cos 9 

rQ9(0 - X)sin 9 

-rQ92 - r (CI - X)2cos29 

1 

0 

+ 0 

g 1 

Only the first two components of Equation 0-11 need to be 

mechanized. Solution of Equation 0-11 for 9 and X by double 

integration of the components r09 and rQX cos 9 give the posi­

tion in terms of the input to the system, Aẑ  and Â , and the 

coordinates of the initial position. 
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XI. APPENDIX D: COMPUTATION OF CORRELATION 

TERMS RELATED TO GYRO ERRORS 

The integral equation for the optimum weighting function, 

Equation 60, and the equation for the residual error, Equation 

114, both have terms of the form 

"l = /Jae2 - e2) (B-l) 

and 
X 

h2 = f C«o + ̂ <6 " T> (D-2) 

Since these terms are required in the computation of Section 

IV, the integrals D-l and D-2 shall be evaluated assuming 

0%t (T) = a2e ' (D-3) 

The form of 0, given by Equation D-3 is a reasonably good 

approximation for the correlation function of the random com­

ponents of gyro drift rate for most precision slngle-degree-

of-freedom gyroscopes. To compute ĥ , Equation D-3 may be 

substituted in Equation D-l to give 

Two cases must be considered: 

Case 1: > T 
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For this case the integral may be expanded as 

*1 = + <"1̂  e"C(,1"B2,a»2 (D 5) 

+ a
2fd82/2 e"C(S2'Bl)d6l + 
0 0 T 0 

Noting the symmetry of the second and third Integrals, and 

performing the integrations gives 

hl = «oTlT + T * ̂ [e" Tl(l - e°T) - (1 - e"CT) 1 
C 4 

(D-6) 
for T -ĵ  > T. 

Case 2: < T 

Expanding the integral in a manner similar to that of 

Case 1 and integrating gives 

hl = 40T1T + ̂ c~ T1 + e"CT(l - e 1) - (1 - e 1) J 

(D-7) 
for T1 < T. 

Two cases must also be treated in evaluating the integral 

hg given by Equation D-2. Substitution of Equation D-3 in 

D-2 gives 

HG = J* C *O * "" F)]D@ (D—8) 

Case 1: 

In this case the integral may be expanded as 



www.manaraa.com

88 

h2 = J 1 e2« + a2/Te-e(T-f)de + a2J * e-°<B-T)d(ï (I.9) 
0 U  0 T 

Performing the integration gives 

-Ô 2 2 -c (T-,  -T)  
b2 = «gTi + f-(l - e T) + f_(i . e ) (D-10) 

for T2 > T. 

Case 2: < T 

Expansion of Equation D-9 gives 

h0 = f1 + a2/1 e-o(T-6,d6 (D-11) 
2 o 0 0 

After integration, Equation D-11 becomes 

—2 —C«R CT I 
hg = 'qT"L + — e (e - 1) (D-12) 

for T1  < T. 
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